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	 Look closely enough at any natural material and 
you will find traces of magnetic minerals.  Ranging 
from nano- to macro-scales across the solar system, they 
provide a singular view of its evolution (especially for 
Earth), because the magnetic remanence and hyster-
esis associated with ferromagnetic minerals preserve a 
record of past events. The idea that magnetic minerals 
in rocks and archeological artifacts can serve as proxy 
magnetometers to measure prehistoric magnetic fields 
surfaced in the late 19th century.  However, the subject 
truly gained momentum as paleomagnetism provided 
critical evidence for continental drift and plate tecton-
ics, established that reversals are an intrinsic feature of 
geomagnetic field variability, and developed the magne-
tostratigraphic polarity time scale in conjunction with 
radiometric dating.  Rock and mineral magnetism have 
provided the theoretical and experimental underpinnings 
for these discoveries and, through studies of specific 
materials, continue to provide crucial insights into how 
and why materials acquire and retain magnetization in a 
broad range of both stable and evolving environments.  
Stable magnetic structures were discovered in bacteria 
and other organisms, and their remains are being found 
in the geological record with increasing ease.  The devel-
opment of environmental magnetism as a mechanism for 
studying paleoclimate and the environment is another 
important watershed within our community. 
	 Over 140 research groups exist today worldwide, 
working on a wide range of topics in rock- and paleo-
magnetism, and every year hundreds of papers are pub-
lished on these topics in peer reviewed scientific jour-
nals.  For each of the last three years the Institute for 
Rock Magnetism’s annual bibliographic compilation 
has logged over 500 magnetics related papers exclud-
ing those primarily related to space physics (http://www.
irm.umn.edu/IRM/refs.html).
	 The idea of compiling a document that collects the 
community’s thoughts on “Our Science” dates back at 
least as far as the 1986 Asilomar conference (Banerjee, 
1987, EOS 68, 650-663).  The current incarnation origi-
nated at a meeting of the IRM’s Review and Advisory 
Committee with IRM faculty and staff in 2011, and an 
initial draft by Joshua Feinberg and Catherine Constable 
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was circulated to ~50 prominent researchers in the differ-
ent fields of rock and mineral magnetism.  Such a docu-
ment was meant to mention some broadly acknowledged 
magnetic success stories, note how views have evolved 
over the past decades, describe some anticipated direc-
tions for the 21st century magnetics research, and in-
clude a synopsis of the resources needed to conduct this 
kind of science.  It is an attempt to collect scientific ideas 
with international currency, reflecting the global collegi-
ality and collaborations inherent to our discipline, outlin-
ing for community discussion some views on captivating 
problems in mineral, rock, and paleomagnetic research 
that have important links into broad-based Earth Science 
Problems.
	 At the 2012 9th Santa Fe Conference on Rock Mag-
netism the floor was opened for further discussion and 
the input received was condensed into an article by Josh 
Feinberg and circulated to the Institute for Rock Mag-
netism’s Research and Advisory Committee for further 
screening and suggestions.  The result of this effort is 
a white paper entitled Mineral, Rock, and Paleomagne-
tism: 21st Century Strengths and Directions, authored by 
the Institute for Rock Magnetism, Members of its Re-

The 2014 Santa Fe Conference on Rock Magnetism 
is approaching!

The 10th Santa Fe Conference on Rock magnetism will be help at St. 
John's College in Santa Fe New Mexico from June 26-30 2014. An option-
al field trip will be offered on Thursday June 26 and conference sessions 
will begin later that evening. On Sunday June 30th there will be an op-
tional all day FORC worshop for those who wish to attend. Registration 
and travel information is available on the IRM website and other media!
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Visiting Fellows'
Reports

Formation of monoclinic pyrrhotite in 
slightly metamorphosed argillaceous 
rocks: Some new insights.

Charles Aubourg 
Laboratory of Complex Fluids and Their Res-
ervoirs. UMR5150 CNRS. University of Pau, 
France. charles.aubourg@univ-pau.fr

	 In slightly metamorphosed rocks, the contribution 
of monoclinic pyrrhotite has been reassessed thanks to 
the (re) discovery of the Besnus transition at 32K in the 
late 80’s (e.g. (Rochette, Fillion et al. 2011) for an up-
date). Its occurrence in sub greenschist metamorphism 
is particularly well demonstrated in metamorphosed ar-
gillaceous rocks from the Alps (Crouzet, Ménard et al. 
1999), Himalaya (Appel, Crouzet et al. 2012) and Tai-
wan (Horng, Huh et al. 2012). It is generally assumed 
that the formation of monoclinic pyrrhotite results from 
the breakdown of magnetite for burial temperature in the 
range ~200-300°C and from the breakdown of pyrite for 
temperature >300°C (Rochette 1987). 
	 In the Taiwan belt, Horng et al. (2012) have investi-
gated the occurrence of monoclinic pyrrhotite in meta-
morphosed argillaceous rocks. Using hysteresis loops, 
they observed a mix of ‘straight lines’ and ‘pyrrhotite-
like’ trends. The ‘pyrrhotite-like’ loops are restricted to 
the epizone while the ‘straight-lines’ are localized in the 
anchizone. The transition between the two behaviors is 
sharp, and suggests that formation of pyrrhotite is rela-
tively sudden. The aim of my stay at the IRM was to in-
vestigate low-temperature magnetic properties of argilla-
ceous rocks in the Taiwan belt to 1) verify the occurrence 
of pyrrhotite and magnetite, 2) establish a relationship 
between the formation of pyrrhotite and burial tempera-
tures. 
	 The burial temperature is obtained from Raman Spec-
troscopy analysis (RSCM). Calibration curve provided 
by Beyssac et al. (Beyssac, Simoes et al. 2007) allows 
the detection of a minimum burial temperature near the 
Curie temperature of pyrrhotite with an absolute accu-
racy of ±30°C. Lafhid et al. (2010) extended the calibra-
tion curve in the range ~200°C to 320°C. However, the 
absolute accuracy of RSCM in the range 200-320°C is 
more questionable. Hence, the RSCM technique is par-
ticularly adapted to monitor the formation of pyrrhotite 
in argillaceous rocks.  
	 We sampled argillaceous Tertiary marine rocks (clay-
stones and siltstones) from fresh road cuts along sections 
from the Hushshan Range (Taiwan). To elucidate both 

Verwey (~120K) and Besnus (~35K) transitions, we 
measured low-temperature properties of a remanence 
acquired at 300K under a magnetic field of 2.5 T (RT-
SIRM). In addition, we measured the FORC’s at room 
temperature of representative samples.   
	 For burial temperature ~200-330°C, the RT-SIRM is 
low (~10-5 Am2/kg). we observe both the Verwey and 
the Besnus transitions (Fig. 1A-B). The Besnus transi-
tion is reversible, meaning that pyrrhotite is SD and close 
to 1 µm. The Verwey transition indicates that magnetite 
is stoichiometric. Magnetite is likely neoformed during 
diagenesis (Kars et al., 2012; Aubourg et al., 2012).  For 
burial temperature >350 ±30°C, the Verwey transition is 
no longer detected and only the non-reversible Besnus 
transition is observed. In addition, the RT-SIRM increas-
es by one to three orders in magnitude. 
	 Our result suggests therefore that most of the mag-
netite consumption takes place for temperature near 
350°C. At ~350°C, the pyrite breakdown starts, leading 
to the production of large amounts of pyrrhotite. This 
temperature is higher than the Curie temperature of pyr-
rhotite (Tc~325°C). Hence, the remanence acquired by 
argillaceous rocks is essentially a thermo remanent mag-
netization (Appel, Crouzet et al. 2012). 
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Current Articles
A list of current research articles dealing with various topics in 
the physics and chemistry of magnetism is a regular feature of 
the IRM Quarterly. Articles published in familiar geology and 
geophysics journals are included; special emphasis is given to 
current articles from physics, chemistry, and materials-science 
journals. Most are taken from ISI Web of Knowledge, after 
which they are  subjected to Procrustean culling for this news-
letter. An extensive reference list of articles (primarily about 
rock magnetism, the physics and chemistry of magnetism, 
and some paleomagnetism) is continually updated at the IRM. 
This list, with more than 10,000 references, is available free of 
charge. Your contributions both to the list and to the Current 
Articles section of the IRM Quarterly are always welcome. 

Anisotropy and Magnetic Fabrics
Chakraborty, P. P., K. Das, S. Saha, P. Das, S. Karmakar, and 

M. A. Mamtani (2013), Reply to the discussion of Deb 
(2013) on the paper of Saha et al. (2013) entitled 'Tectono-
magmatic evolution of the Mesoproterozoic Singhora basin, 
central India: Evidence for compressional tectonics from 
structural data, AMS study and geochemistry of basic rocks', 
Precambrian Research, 236, 297-302.

Dawai, D., J. L. Bouchez, J. L. Paquette, and R. Tchameni 
(2013), The Pan-African quartz-syenite of Guider (north-
Cameroon): Magnetic fabric and U-Pb dating of a late-oro-
genic emplacement, Precambrian Research, 236, 132-144.

Fleming, E. J., H. Lovell, C. T. E. Stevenson, M. S. Petronis, 
D. I. Benn, M. J. Hambrey, and I. J. Fairchild (2013), Mag-
netic fabrics in the basal ice of a surge-type glacier, Journal 
of Geophysical Research-Earth Surface, 118(4), 2263-2278.

Gomonay, O., S. Kondovych, and V. Loktev (2014), Shape-in-

Fig 1. RT-SIRM monitoring and histeresis loops of representative argillaceous rocks from the Taiwan belt. Burial temperature is 
obtained with the RSCM technique.
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289-301.

Schobel, S., H. de Wall, and C. Rolf (2013), AMS in basalts: is 
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Bio- Geomagnetism
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Good News!
Disappointed that Roy Thompson and Frank 
Oldfield's (1986) textbook "Environmental Mag-
netism" has long been unavailable?
If so the 8-keystroke Gooogle "geos roy" search 
should efficiently get your browser to the au-
thors' .pdfs at:
http://www.geos.ed.ac.uk/homes/thompson/
envmag/
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view and Advisory Committee and Colleagues from the 
International Rock Magnetic and Paleomagnetic Com-
munity.  
	 The intent is to circulate the paper via different chan-
nels, in the hope that these new frontiers will further fos-
ter cross-disciplinary research and excite the next gen-
eration of scientists entering our field. The full-version 
is to be sent to the NSF program directors, to inform and 
educate on the state-of-the-art of Earth Science-related 
magnetic research and what we as a community feel the 
future trends of magnetism will be.  A formatted version 
will be circulated through EOS addressing the wider 
public to give an appreciation of where magnetism is at 
today, what has been achieved so far and where we be-
lieve it is headed.  A web-link to the IRM’s website will 
also direct readers to the full document.  
	 Through the IRM Quarterly, we address our com-
munity in a more informal manner, explaining the pur-
pose and history of the paper to all those to whom it may 
be first-news, and reassuring that the White Paper by no 
means intends to exclude any research group or field of 
study, but on the contrary is the result of an open ef-
fort that ultimately seeks to foster collaboration, further 
unite, and strengthen the community.

Questions Driving Magnetics Research
	 We start by posing some representative broad-based 
science questions, which can be addressed through the 
collection of magnetic data, and interdisciplinary col-
laboration, beginning with those requiring a deep time 
perspective and ending with those that have a more cur-
rent focus.

1.	 Did magnetic fields exist in the early solar nebula 
and play a major role in planet formation?  It was only 
recently discovered that proto-planetary objects may 
have had short-lived dynamos.  These early solar sys-
tem fields, in addition to that of the evolving young Sun, 
may have magnetized many of the oldest extraterrestrial 
materials and celestial bodies.  What can magnetic re-
cords from other planets and extraterrestrial objects tell 
us about their evolutionary history and that of the Earth?
 
2.	 What is the long term behavior of the Earth’s mag-
netic field, and how can observations of these behaviors 
inform questions regarding the geodynamic, atmospher-
ic, and biologic development of the planet?  Determining 
when the Earth’s magnetic field began and in what con-
figuration (dipolar vs. non-dipolar) is a first-order geosci-
ence question.  As the astrophysics and planetary science 
communities strive to discover life on bodies outside our 
solar system, it is important that we better understand the 
implications of the geodynamo’s onset and evolution for 
terrestrial biologic and atmospheric evolution, as well as 
long term climate change.  Are there changes in the over-
all strength and variability of the geomagnetic field over 
the past 4.5 Ga that can inform us about major events 
in Earth history and geodynamics? Are paleomagnetic 
observations over geological time consistent with the 

cont’d. from pg. 1... Geocentric Axial Dipole (GAD) hypothesis, which pos-
its that the planet’s geographic poles are coincident with 
the magnetic poles on timescales >10 ka? This GAD hy-
pothesis is central to all efforts to reconstruct tectonic 
plate movements, to determine the assembly and disag-
gregation of super-continents, to normalize paleointen-
sity estimates from different latitudes, and to apply mag-
netostratigraphic techniques to volcanic and sedimentary 
sequences.  If the field has been significantly non-dipolar 
over long periods of time, when were these intervals and 
what was their underlying cause?  Has extreme True Po-
lar Wander (dramatic spin axis shifts of the Earth) oc-
curred in the geological past, and if so, what were the 
controlling factors?  Can we use mantle plumes as a 
fixed reference frame with respect to the mantle, or do 
these blow in the ‘mantle wind’ on short time scales with 
respect to the spin axis?  All of these questions require 
a deeper view of the long-term behavior of the Earth’s 
geomagnetic field and its interconnected relationships 
with mantle, crustal, atmospheric, and biological sys-
tems.

3.	 What is the short-term behavior of the Earth’s mag-
netic field? What do high-resolution paleomagnetic re-
cords and derived paleofield models for the last 1 Ma 
tell us about the geodynamo and its underlying physical 
processes?  How fast can the geomagnetic field change 
during secular variation (time scale of <10 ka), dipole 
reversals (1-10 ka) and short term dipolar excursions (<1 
ka)?  Are all these processes part of the same continu-
um or does one influence the others?  Can we improve 
our understanding of the way that sediments acquire a 
depositional remanence, overcoming such limitations as 
lock-in depth, redox reactions, and inclination shallow-
ing, so that we can ultimately get a clearer, more con-
tinuous view of short-term geomagnetic behavior?  Can 
we improve the integration of paleomagnetic records 
from sedimentary, volcanic, and archaeological sources 
to create statistical geomagnetic models with better geo-
graphic coverage?  Have past short-term geomagnetic 
variations influenced global and regional climate, and by 
extension, ancient human cultures?  Looking forwards, 
what are the implications of this short-term behavior on 
the effects of space weather on human satellite systems?  
How can we use past geomagnetic behavior to prepare 
for the future? 

4.	 How accurately are environmental and climate sig-
nals recorded by magnetic minerals in soils, sediments, 
and rocks?  It has long been known that minerals in ig-
neous and sedimentary environments are a reflection of 
the thermodynamic and chemical conditions in which 
they formed.  Environmental magnetists have success-
fully leveraged this idea to compile histories of regional 
environmental and global climate change.  Magnetic en-
hancement records from ancient soils in Chinese loess 
(eolian dust deposits) have provided the first long term 
(>2 Ma) continental climate record.  But why are such 
enhancements absent in some other loess deposits, and 
how can other magnetic signatures from these sequences 
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be used to decipher regional paleoclimatic variations?  
Paleomagnetic and oxygen isotopic records from marine 
sediments have verified the Milankovitch hypothesis of 
climate cycles on timescales >40 ka.  Can higher fre-
quency (< 10 ka) records of paleointensity fluctuations 
in selected marine sediments be made more reliable to 
extract sharper climate change records to test climate 
change models?  Can we reconstruct iron biogeochemi-
cal cycles in the oceans by magnetically tracking iron 
speciation and chemical alteration in oxides, hydroxides 
and sulfides in marine sediments?  Can we use paleosols, 
developed on sediments other than loess, to better con-
strain paleo-precipitation across a diversity of latitudes?  
Many micro-organisms produce intracellular or extracel-
lular magnetic minerals whose formation and survival 
can be magnetically sensed with high accuracy.  Can we 
utilize these magnetic signals to reconstruct fluctuating 
paleoredox states in ocean environments?  Magnetic 
measurements coupled with low-temperature geochem-
istry and geomicrobiology could help disentangle the 
complementary inorganic and organic processes that de-
fine vague, but critically important terms like “pedogen-
esis” and “diagenesis.”  

5.	 How are magnetic minerals and magnetic fields 
involved in active Earth processes and can we monitor 
them to minimize adverse impacts on human communi-
ties, while at the same time maximizing the needs of a 
growing populace?  Magnetic minerals occur as natu-
ral and anthropogenic components in atmospheric dust, 
runoff into rivers and oceans, and groundwater.  Can we 
better establish the link between the concentration, com-
position, and physical properties of Fe-bearing minerals 
in atmospheric dust and their impact on the absorption 
of solar radiation, weather, melting of snow and ice, ter-
restrial and marine fertility, as well as on air quality and 
human health and safety?  Similarly, the concentration 
of magnetic minerals in soils and river sediments has 
been shown to correlate with the concentration of heavy 
metals.  Can environmental magnetists create innovative 
ways to quantitatively leverage their magnetic measure-
ments, which are cheap, efficient, and easily automated, 
to improve standard environmental monitoring practic-
es? As our communities become increasingly urbanized 
and require additional raw and processed materials, can 
we improve magnetic-based exploration tools, such as 
aeromagnetic surveys, magnetotellurics and magnetic 
fabric analysis to locate and responsibly extract natural 
resources such as copper, gold, and platinum group ele-
ments?  Can we use magnetic methods to monitor the 
status of sulfide mineralogy within tailing piles to en-
sure that acid-mine drainage from these endeavors does 
not compromise our groundwater?  While all of these 
modern applications are tantalizing, studies of such ap-
proaches are mostly lacking, and it is the responsibility 
of the magnetics community to build bridges among di-
verse disciplines in geology, geophysics, geochemistry, 
climate modeling, ecology, cryospheric studies, and hu-
man health to thereby advance these goals.

Addressing the Questions
	 Answering questions like the ones listed above re-
quires the design of appropriate experiments and collec-
tion of paleomagnetic and rock magnetic data, but also 
the development of new magnetic instrumentation that is 
sensitive enough to give us the accuracy that is needed.  
These go hand in hand, and inevitably technological ad-
vances lead to accelerated progress and new possibilities 
in magnetic research.  A notable landmark was the con-
struction of the first superconducting rock magnetometer 
(see Goree and Fuller, 1976), whose excellent sensitivity 
made possible measurements of weakly magnetic ma-
terials and opened up new applications such as biogeo-
magnetism and environmental magnetism. 
	 We conducted a simple exercise by searching mag-
netic areas of research-related keywords in the ISI Web 
of Knowledge database going back to 1954 in ten year 
intervals, and noting the number of references that are 
obtained (Figure 1).  The result gives an interesting 
overview on how magnetics research has evolved, bear-
ing in mind the limitations of such an exercise: not all 
references are present; not all that are retrieved are in 
the Earth sciences; keyword searching is by no means 
comprehensive; and a time-lag (hysteresis?) is always to 
be expected.  Generalized trends, however, can still be 
teased out.
	 Rock Magnetism and Paleomagnetism (fortunately 
for us ISI Web of Knowledge searches for the spelling 
Palaeomagnetism also) have progressed hand in hand 
with developments in Magnetometry, and understand-
ably the latter is the keyword that yields the most results, 
although most of those articles are undoubtedly outside 
of the geosciences.  Rock magnetism and Paleomag-
netism are the only Earth science-related keywords for 
which results date back to the earliest decade searched 
(1954-1963).  
	 The next fields to appear in the search results are 
those involving geomagnetic field records and variations 
at the smaller time scales, like Magnetic Excursions and 
Paleointensity, which first occur in the decade 1964-
73.  Biogeomagnetism and Planetary Magnetism also 
start appearing at this time.	 Articles with the 
keywords Magnetostratigraphy, Paleosecular Variation, 
Depositional (or Detrital) remanent Magnetization, Geo-
dynamo and True Polar Wonder begin appearing in the 
1974-83 interval, possibly highlighting an interest shift 
to longer time scales as recorded by sedimentary stratig-
raphies and their ability to provide continuous records of 
the geomagnetic field, allowing insights into its origin. 
Stratigraphic studies have also experienced a more re-
cent renaissance which is tightly linked to the interest in 
Environmental studies (below) and brought about by the 
recognition of Milankovitch cycles and the use of mag-
netic proxies to identify such cyclicity.  Environmental 
Magnetism, Magnetic Databases and Computation, Ex-
traterrestrial Magnetism are also “up and coming” areas 
of study and development.
	 Crust Deformation, Magnetism and Climate, Dia-
genesis and Magnetism, Core Evolution and Mantle 
Dynamics are the last areas of research to appear in the 
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database, first occurring in the search results for the mid-
eighties to early nineties.
	 The generalized pattern that appears from this search 
seems to reflect an evolution from the general study of 
Rock Magnetism to its applications in Paleomagnetism 
(Plate Tectonics) and behavior of the geomagnetic field. 
An outstanding pattern that emerges from these data is 
the quasi-exponential growth in publication rate in most 
of the research areas, since the appearance of the first 
publications in the ISI search engine. What is clear is 
that projecting these trends into the future will result 
into well over a thousand articles per year in the next ten 
years for the most prominent areas of magnetic research. 
This increasing trend must reflect both the tremendous 
research advances made in recent years and the increas-
ingly competitive nature of academic research. What is 
sure, though is that we will all need reading glasses soon, 
if we don’t already.
	 The top areas of research for the last ten years based 
on the number of hits in Web of Knowledge, are: Mag-
netometry (4,118); Paleomagnetism (1,531); Magneto-
stratigraphy (816); Rock Magnetism (722); Magnetic 
Excursions (600); Environmental Magnetism combined 
with Climate studies (408+190, though Climate could 
also contain articles on climatic effects on the dynamo); 
Paleointensity (529); Geodynamo (516);. Also notably, 
True Polar Wander (209) and Paleosecular Variation 
(139) have seen a steady increase since their inception, 
whereas Biomagnetism (125) is a ‘well-established play-
er’ in today’s science.

Future trends
	 Below are examples of new research opportunities 
that have opened up due to advances in mineral mag-
netism, nanomaterial analysis and computational mod-
eling (micromagnetic modeling) of magnetic spins in 
particles. 

1.	  Advances in materials and methodologies for paleo-
intensity determination from terrestrial and extraterres-
trial materials.  Improving our compilation of the history 
of the strength of geomagnetic field remains one of the 
central challenges facing rock magnetism and paleomag-
netism.  Over the last 10 years the community has made 
great strides in using submicrometer-sized magnetite 
crystals embedded in many types of silicates and subma-
rine basaltic glasses.  The use of such ideal magnetic re-
corders, which are protected from subsequent alteration 
by their silicate hosts, needs to be expanded to include 
oxide exsolution microstructures and single crystal zir-
cons.  Parallel experimental studies are needed to utilize 
new scanning technologies like atomic and magnetic 
force microscopes capable of operating at temperatures 
higher than 300 K. Computational micromagnetic mod-
els need to become more realistic by including magneto-
elastic interactions with internal defects.  Better models 
are also needed for the dependence of magnetization on 
the rate of change of temperature and magnetic fields.  
These models can help us separate primary signals from 
secondary magnetizations due to viscous, chemical and 

late generation re-heating processes.  New thermal and 
analog paleointensity methods need to be developed to 
extract paleointensities from extraterrestrial samples in-
cluding alloys and sulfides of iron nickel and iron phos-
phates.  Meteorites and lunar rocks provide records of 
past magnetic fields on other planetary bodies and in the 
nebula.  However, most samples cannot be analyzed with 
alternating field (AF) demagnetization because the alter-
nating field generates a spurious anhysteretic remanence 
(ARM).  Overcoming this problem requires the develop-
ment of low-ARM noise systems, which would permit 
the paleomagnetic investigations of a much greater di-
versity of samples (including entire groups of meteor-
ites) that are currently inaccessible.  This instrumental 
development would also assist in the analysis of multi-
domain samples on Earth. The rewards for such studies 
include new knowledge about the magnetic fields associ-
ated with the early solar system, the Moon, meteorites, 
Mercury, as well as an improved understanding of the 
source of very large crustal magnetic anomalies as on 
Mars.  On Earth, the number of available paleointensity 
estimates and their temporal continuity might be greatly 
enhanced by a generally applicable theoretical under-
standing of what controls the acquisition and strength of 
magnetization in sediments.  

2.	 Environmental magnetism and paleoclimate recon-
struction.  Environmental magnetism has existed as a 
discipline only for the last 30 years.  However, the con-
tributions of rock, mineral and sediment magnetism in 
this area have had a large impact.  For example, magnet-
ic records from windblown and fluvial sediments have 
helped produce the first long (2 Ma) record of Milanko-
vitch cycles on land and have identified modern heavy 
metal pollution from multiple sources in central Europe 
and Asia.  The mineral magnetic properties of atmospher-
ic dust, as well as other related physical properties, are 
receiving increasing attention.  The parameters sought 
for environmental studies are composition, concentra-
tion and particle size of the magnetic minerals contained 
in the sediments.  However, the last 10 years have seen 
a strong push to make such results more quantitative and 
linked specifically to temperature, precipitation, wind 
intensity, hydrology and even microbial content, making 
it necessary for environmental magnetists to collaborate 
with sedimentologists, geochemists, atmospheric, and 
soil scientists.  Such efforts have made it clear that we 
need to calibrate the magnetic effects of biogeochemical 
changes in the natural environment.  Future studies will 
require the synthesis (biotic and abiotic) of nanoparticles 
of iron oxides and hydroxides that are analogous to the 
materials produced during the first stages of sediment 
diagenesis.  Nanometer-sized, dual-phase grains consist-
ing of a core and a 3-nm skin are commonly produced 
during diagenesis and atmospheric transport.  To char-
acterize their magnetizations and better understand the 
processes that regulate our environment, diverse tools 
like low temperature magnetism, Mössbauer spectros-
copy, and synchrotron studies using techniques such as 
Extended X-ray Absorption Fine Structure (EXAFS), 
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X-ray Absorption Near Edge Structure (XANES), and 
X-ray Magnetic Circular Dichroism (XMCD) will be 
needed.  The US can play an important role in these ap-
plications in the near future because of the availability of 
synchrotron sources and related environmental research 
in many centers such as the Pacific Northwest and Oak 
Ridge National Laboratories.  Synchrotron facilities out-
side the United States, such as ISIS and the Diamond 
Facility in the United Kingdom and the Beijing Synchro-
tron Radiation Facility in China, are increasingly leading 
the charge in leveraging these new tools in the pursuit of 
magnetics research. 

3.	 Advances in novel magnetometry for high spatial 
resolution study of single crystals from terrestrial and 
extraterrestrial sources.  Recent advances in magnetic 
microscopy (e.g., scanning SQUID microscopes and off-
axis electron holography) have demonstrated the impor-
tance of imaging in-situ fine scale magnetic structures 
and establishing their contributions to macroscopic phe-
nomena.  Dedicated instruments that allow researchers 
to carefully control the measurement environment (e.g., 
variable magnetic fields, >300 K temperatures, and con-
trolled atmospheres) are needed for Earth scientists to 
study the origin and stability of magnetism at a variety 
of length scales, from nanometers to millimeters.  Novel 
forms of magnetic microscopy and high sensitivity mag-
netometers need to be adapted for Earth materials.  Some 
advances in magnetometers (e.g. atomic magnetometers) 
may be relatively affordable and suitable for all paleo-
magnetic labs.  For others, it seems possible that instead 
of concentrating a number of such expensive instru-
ments at a single center, the US might consider ‘multi-
pod’ centers to exploit the first-generation equipment in 
existent materials science and nanoscience centers such 
as the NNINs (National Nanotechnology Infrastructure 
Network). 

4.	 Development of spacecraft magnetometers for in 
situ planetary exploration.   The continued spacecraft 
exploration of the solar system is offering unprecedent-
ed opportunities for carrying the above kinds of inves-
tigations to other bodies.  Landers are in development 
or planned for the surfaces of the Moon, Mars, comets, 
and asteroids.  Spacecraft magnetometers have reached 
a sweet spot combining a highly robust architecture with 
low mass and power requirements.  The continued devel-
opment and miniaturization of new fluxgate and atomic 
magnetometers and the development of spacecraft rock 
magnetometers offer the possibility of in situ rock mag-
netic investigations on the surfaces of the other bodies.  
This will permit unprecedented new constraints on their 
magnetic mineralogies, geologic, climatic, and geomag-
netic histories.  

5.	 Biogeomagnetism.  Many organisms, from mam-
mals to bacteria, are sensitive to the geomagnetic field 
and use it for orientation and navigation (in combination 
with other environmental cues).  While magnetofossils 
are known to be important contributors to records of the 

ancient geomagnetic field in sediments, and biogenic 
magnetite and greigite is believed to be essential for 
magnetoreception, we have only a poor understanding of 
how various life forms accommodate large scale chang-
es in field strength, direction, and changing exposure to 
space weather.  The science of magnetoreception is a 
burgeoning interdisciplinary field involving behavioral 
biology, biological physics, neuroscience, geophysics, 
and rock magnetism.  Researchers studying magneto-
tactic bacteria are developing a database for information 
related to their gene sequencing and basic rock magnetic 
properties, http://database.biomnsl.com/index.html).  
Such studies complement the increasing successful ef-
fort to identify magnetofossils and other Fe-biominerals 
throughout geologic history, and to determine their first 
appearance in the geologic record.

6.	 Community Databases, Computational Resources, 
and Cyberinfrastructure.  Most of the topics listed above 
have been of major interest for several decades, and sig-
nificant progress still requires high quality global data 
sets spanning relevant time intervals.  The magnetics 
community has anticipated the move towards large-scale 
database development that has culminated in the NSF 
EarthCube Initiative, and recent efforts like the Mag-
netics Information Consortium (MagIC) and related 
services devoted to individual data types (e.g. Geoma-
gia50, PINT) preserve access to the cumulative body of 
knowledge necessary to make progress on both regional 
and global scale problems.  For example, such databases 
are required for researchers to isolate evidence, or lack 
thereof, for dominantly dipolar field structure in paleo-
intensity data.  The MagIC database opens the doors 
for understanding bias in published data through the 
careful documentation of materials, methodology, and 
data.  Much work remains to be done in order to provide 
computational resources for the magnetics community.  
Specific computational needs vary according to whether 
a study is rock magnetic, enviromagnetic, paleomagnet-
ic, or geomagnetic in nature, and no single research is 
capable of satisfying all of these needs.  However as a 
community, we advocate for streamlining our computa-
tional needs under a single, or at least a minimal number, 
of cyberinfrastructures.  EarthRef.org, which currently 
hosts MagIC, is perhaps the best existing platform for 
our community, and can in the future also provide public 
access for various types of modeling, fitting, and inver-
sion software provided by researchers from around the 
world.  These software applications can be developed at 
any institution, but should ultimately be hosted through 
EarthRef.org, and integrated with MagIC databases.  
Along these lines EarthRef.org already serves as a host 
for geomagnetic field models through ERDA (Earth Ref-
erence Digital Archive), and these models provide a stra-
tegic method for dating and/or evaluating new archeo-
magnetic or other Holocene data. 

Concluding Remarks:
The innovative use of rock and paleomagnetism is a 
rich and commonly under-utilized source of geophysi-
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cal information in an increasingly interdisciplinary sci-
ence environment.  Other areas that stand to benefit from 
progress in paleo and rock magnetic research include 
planetary science, geodynamo studies, paleooceanogra-
phy, paleoclimate, environmental science, archaeology, 
geochronology and tectonic studies.  A recent National 
Research Council report, “New Research Opportunities 
in the Earth Sciences” emphasized the need for syner-
gistic approaches involving rock and paleomagnetism.  
The NSF EarthCube Initiative currently being devel-
oped provides the vision of using the cyberinfrastructure 
generated in EarthCube as an experimental instrument 
in its own right, giving access to experimental data and 
modeling tools across a broad range of fields and using 
them to make new linkages that drive the agenda for 
cutting-edge interdisciplinary science.  The international 
rock- and paleomagnetic community are eager to con-
tribute with new data, theoretical ideas, and numerical 
modeling.
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Figure 1. Results of a keyword search on the ISI Web of 
Knowledge performed for different areas of research in 
magnetism for ten-year intervals going back from No-
vember 2013 to 1954 (Note the logarithmic scale!)
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