The main goal of many IRM visitors is to better understand the composition of the magnetic remanence carriers in their samples. Typically, a material’s Curie or Néel temperature serves as the primary means for estimating its mineralogical composition. However, many of the most commonly used techniques, such as high temperature susceptibility and thermal demagnetization experiments, have to be interpreted carefully due to the complicating effects of grain size. For example, single-domain grains contribute less signal to susceptibility experiments than superparamagnetic and multidomain grains of the same material, and thermal demagnetization experiments are insensitive to superparamagnetic grains. Furthermore, the unblocking temperatures observed in a thermal demagnetization experiment will typically be lower than the Curie or Néel temperature of the material.

In this context, strong-field thermomagnetic experiments are the only technique in our magnetic toolkit that provides an unfettered view of the composition of a magnetic material. These experiments involve the measurement of a specimen’s induced magnetization in the presence of a high field (1-2.5 T) across a range of elevated temperatures, often up to 700°C. Typically these experiments are conducted using a vibrating sample magnetometer (VSM) and require the use of a high temperature cement. The magnetic qualities of this high temperature cement have become increasingly important as more and more of our IRM visitors are examining samples with exceedingly low concentrations of magnetic material (e.g., silicate-hosted magnetic inclusions) or samples with very weak induced moments (e.g., samples dominated by hematite, goethite, and ferrihydrite). In these instances, any source of magnetic contamination in a strong-field thermomagnetic experiment can lead to an incorrect interpretation of a sample’s magnetic mineralogy.

Here we examine the magnetic properties of some of the most commonly used high temperature cement. We present data for three types of Omega High Temperature cement. While these cements are ideal for highly magnetic geological materials, including most igneous rock types, the magnetism of these cements can be surprisingly high and on par with more weakly magnetized natural materials, and so we present this IRM Quarterly article as a kind of cautionary tale to the uninitiated.

What are high temperature ceramic cements made of?

In many ways high temperature ceramic cements are ideal for rock magnetic applications. They are stable across an enormous range of temperatures (from -200°C...
Visiting Fellows' Reports

Rock magnetic characterization of Cretaceous/Paleogene fluvial deposits from the Hell Creek Region, MT: A search for titanohematite

Courteny J. Sprain
Department of Earth and Planetary Science
University of California-Berkeley
spra0111@berkeley.edu

Despite decades of intense study, the relative significance of potential causes of the Cretaceous-Paleogene mass extinction, such as voluminous (>106 km³) volcanic eruptions of the Deccan Traps and the large impact recorded by the Chicxulub crater, remains in debate (Schulte et al., 2010; Archibald et al., 2010; Courtillot et al., 2010; Keller et al., 2010). Testing different extinction hypotheses is inhibited by insufficient geochronology, exemplified in the geomagnetic polarity timescale (GPTS). The GPTS is used for age control in numerous KPb studies that lack means for direct dating, ranging from the investigation of climate change to evolution of life across the KPb. If well-calibrated with high precision ages, the GPTS would provide a powerful tool for probing deeper into the events surrounding the mass extinction.

Terrestrial fluvial deposits that make up the Hell Creek and Tullock Formations within the Hell Creek region of NE Montana (USA) provide an opportunity to refine the ages of polarity reversals near the KPb (C30n-C28n). Interbedded in these formations are abundant sandine (K-feldspar) bearing ashes, which have yielded 40Ar/39Ar ages with resolution as good as ± 11 ka and absolute accuracy in the range of ± 40 ka (Renne et al, 2013; Sprain et al., 2014). By tying high-precision 40Ar/39Ar ages to reversals in a magnetostratigraphic study we can obtain ages for circum-KPb chron boundaries at an unprecedented precision, facilitating the comparison of KPb studies worldwide and enhancing our understanding of the causes and timing of the circum-KPb ecological crises and recovery.

To further add confidence to our magnetostratigraphic results, I conducted rock magnetic analyses at the Institute for Rock Magnetism focusing on the characterization of magnetic mineralogy and grain size distribution of magnetic minerals. Previous paleomagnetic work in the Hell Creek region conducted during the early 1980’s and 1990’s used strong-field thermomagnetic analysis, X-ray diffraction, and electron microprobe analysis to determine magnetic mineralogy. The results of these studies indicated that the dominant ferromagnetic mineral was intermediate-composition titanohematite, with a Curie temperature between 160–300°C (Swisher et al., 1993). These results are similar to those observed for other KPb Laramide continental deposits in the San Juan Basin, New Mexico and within the Williston Basin, North Dakota (Butler & Lindsay, 1985; Lund et al., 2002). No further rock magnetic analyses have been conducted on rocks from the Hell Creek region since Swisher et al. (1993). As such, my goal at the IRM was to update the magnetic characterization of our samples using modern equipment and techniques, and to test previous results, in particular the presence of titanohematite as the primary magnetic carrier of DRM in our samples.

High-temperature susceptibility experiments using the KappaBridge were conducted on a subset of samples comprising both whole rocks and magnetic extracts. Determination of Curie temperatures was unsuccessful for whole rock samples. For these samples, temperature curves were not reversible between heating and cooling, which was likely caused by the alteration of clay minerals to form magnetite during heating suggested by a susceptibility increase upon cooling. High temperature susceptibility experiments on magnetic extracts were much more successful. These experiments indicate that our samples have Curie temperatures that range from ~180°C to 300°C. This result is consistent with previous studies, and is in the range of expected Curie temperatures for intermediate composition titanohematite, although is not definitive proof as other phases such as titanomagnetite could also produce similar values.

To further constrain magnetic mineralogy, I conducted low-temperature experiments, including RTSIRM and FC/ZFC, using the “Old Blue” MPMS on whole rock samples and magnetic extracts. These experiments revealed that for a majority of samples the Verwey transition is present, although significantly suppressed, suggesting that a form of magnetite exists in our samples. RTSIRM curves show a significant increase in intensity towards lower temperatures, reminiscent of goethite (Fig.1). The heating RTSIRM curves remains below the cooling RTSIRM curves for most of our samples, which is likely due the presence of magnetite and cooling through the Verwey transition. Although RTSIRM curves suggest the presence of goethite, one of goethite’s diagnostic features, a wide spread between FC and ZFC remanences, is not present in our samples. On the contrary, there is barely any spread between FC and ZFC curves at all (Fig. 1). A potential explanation for this observed trend is that the increased intensity towards lower temperatures in RTSIRM curves could be caused by the presence of intermediate-composition titanohematite, not goethite, as it also has a low ordering temperature (~200°C).

As a final check to see whether titanohematite is the primary magnetic carrier in our samples, I conducted a self-reversal test. Intermediate composition titanohematite has a unique property in that exsolved bands of Ti-rich and Ti-poor lamellae can interact such that the acquired remanence is recorded antiparallel to the applied field. To test for this property we imparted a TRM using a 100 μT field, at a max T of 300°C, for a soak time of 30 minutes. This
test was conducted on two samples. For the first sample the results were ambiguous. For the second sample, initial measurements showed a component of magnetization parallel to the applied field. Upon AF demagnetization, gradually up to 120 mT, a second component of magnetization became clear, exactly antiparallel to the applied field (Fig. 2). What this result shows is at least some of our samples have intermediate-composition titanohematite as a primary carrier of magnetization, but an additional component also exists, which due to the presence of a subdued Verwey transition and blocking temperatures below 300°C, is likely a form of non-stoichiometric magnetite, or maghemite. To confirm these results, I would like to conduct the self-reversal test on more samples, in addition to further characterizing magnetic mineralogy using X-ray diffraction. More work is needed to determine the grain size distribution of magnetic minerals in our samples, as the presence of titanohematite precludes the use of magnetic grain size indicators that are based on the assumption that magnetite is the dominant magnetic carrier.

I’d like to thank everyone at the IRM for their staunch support and kindness during my brief visit. In particular I’d like to thank Mike Jackson for showing me the ropes and being a great mentor through the whole process. In addition I’d like to thank Josh Feinberg for great intellectual support, and Bruce Moskowitz, who brilliantly suggested we try a self-reversal test.

References

The IRM Quarterly is always available as full color pdf online at: www.irm.umn.edu
If you would like to receive an email announcement, email: dario@umn.edu
Current Articles

A list of current research articles dealing with various topics in the physics and chemistry of magnetism is a regular feature of the IRM Quarterly. Articles published in familiar geology and geophysics journals are included; special emphasis is given to current articles from physics, chemistry, and materials-science journals. Most are taken from ISI Web of Knowledge, after which they are subjected to Procrustean culling for this newsletter. An extensive reference list of articles (primarily about rock magnetism, the physics and chemistry of magnetism, and some paleomagnetism) is continually updated at the IRM.

This list, with more than 10,000 references, is available free of charge.
Your contributions both to the list and to the Current Articles section of the IRM Quarterly are always welcome.

Archeomagnetism
Garcia, K. J., Martinez, G. Cuencabesos, and E. Carbonell (2014), Human occupation of Iberia prior to the Jaramillo magnetochron (> 1.07 Myr), Quaternary Science Reviews, 98, 84-99.

Bio-Geomagnetism

Environmental magnetism and Climate

Paleointensity and records of the geomagnetic field

Bispontos, F. M. S. D’Agrella, R. I. F. Trindade, L. Janikian, and N. J. Reis (2014), Was there SAMBA in Columbia? Paleomagnetic evidence from 1790 Ma Awanavero mafic sills (northern Amazonian Craton), Precambrian Research, 244, 139-155.

Halls, H. (2014), Crustal shortening during the Paleoproterozoic: Can it be accommodated by paleomagnetic data?, Precambrian Research, 244, 42-52.

Hnatyshin, D., and V. A. Kravchinsky (2014), Paleomagnetic dating: Methods, MATLAB software, example, Tectonophysics, 630, 103-112.

Marten, E., V. Cosovic, and A. M. Moro (2014), New stepping stones, Dugi otok and Vis islands, in the systematic paleomagnetic study of the Adriatic region and their significance in evaluations of existing tectonic models, Tectonophysics, 611, 141-154.

Salmijnen, J., S. Mertanen, D. A. D. Evans, and Z. Wang (2014), Paleomagnetic and geochemical studies of the Mesoproterozoic Satakunta dyke swarm, Finland, with implications for a Northern Europe - North America (NENA) connection within Nuna supercontinent, Precambrian Research, 244, 170-191.

Surveying

Other

cont’d. from pg. 1...

Fig 2. Raw data (a) and filtered data (b) of hysteresis loops of samples Omega 700, 600, OmegaCC; (c) Stepwise AF demagnetization of SIRM of four samples of Omega700. SIRM was imparted at RT using a field of 1 T; (d) First-order reversal curve (FORC) diagram for sample Omega700_test3, produced using FORCinel (Harrison & Feinberg, 2008) with the VARI-FORC smoothing method (Sc0=Sb0=5.5, Sc1=Sb1=8; lambda=0.1). The dashed lines indicate the limits of statistically significant signal.

to +1400°C), moderately heat conductive, resistant to most acids, electrically insulative, and they adhere to virtually any surface. This study examines the magnetic properties of three different cements from Omega Engineering Inc.: Omegabond® 600 Chemical Set Cement ("OB-600"), Omegabond® 700 Chemical Set Cement ("OB-700"), and CC High Temperature Cement ("Omega CC").

OB-600 is made primarily out of zirconium silicate (ZrSiO₄) with lesser amounts of magnesium oxide (MgO), and magnesium phosphate (Mg(H₃PO₄)·H₂O). When water is added to the cement, an acid-base reaction occurs between the MgO and the phosphate, resulting in the formation of a gel that ultimately crystallizes into an insoluble phosphate mineral. The zirconium silicate acts as an inert filler that is cemented in place by the newly crystallized phosphate. This cement is stable to 1427°C.

OB-700 is made primarily out of quartz (SiO₂) with lesser amounts of sodium disilicate (Na₂O·(SiO₂)₂) and sodium fluosilicate (Na₂SiF₆), and magnesium alumina silicate (clay). Sodium disilicate is also known as "waterglass" or "liquid glass" and is frequently used as binder to help stabilize archaeological materials. Waterglass is produced by mixing natural quartz sand in a steam reactor with sodium hydroxide (NaOH) to form the reaction:

\[2 \text{SiO}_2 + 2 \text{NaOH} \rightarrow \text{Na}_2\text{O}·(\text{SiO}_2)_2 + \text{H}_2\text{O} \]

Awareness of this production technique is important for magnetic studies because it can include trace amounts of iron, which frequently occurs within natural quartz sands as pigmentary hematite coatings or as Fe-bearing mineral inclusions. Such iron is typically converted to goethite (α-FeO·OH) during the production of dried sodium disilicate. When water is added to OB-700, the Na₂SiF₆ acidifies the Na₂O·(SiO₂)₂, allowing the silicon dioxide groups to polymerize, while the quartz and clay act as inert fillers. The quartz and clay are also likely to contain trace concentrations of Fe-bearing materials. This cement is stable to 827°C.

Omega CC is a two-part cement consisting of a powder filler composed of ZrSiO₄ and Na₂SiF₆ as well as a liquid binder composed of waterglass mixed with water. When the powder and binder are mixed, the same chemical reaction that describes the setting of OB-700 occurs within the Omega CC cement. The ZrSiO₄ again acts as
an inert filler material that also happens to be resistant to acid corrosion. This cement is stable to 843°C.

Results

Each cement sample in this study was prepared as a 5 mm diameter cylinder that was 10 mm tall and was mixed according to the directions provided by Omega Engineering, Inc. (OB-700: mixture of 25% water to 75% powder by weight; OB-600: mixture of 13 parts water to 100 parts powder by weight; Omega CC: mixture of 20% liquid binder to 80% powder filler by weight). All samples cured in the air at room temperature for 24 hours.

Low-temperature measurements were performed using Quantum Designs MPMS instruments cycling between 300 K and 20 K. Hysteresis loops and first order reversal curve (FORC) experiments were carried out on a Princeton Measurements VSM. Multiple FORC measurements (2-5) were collected for each sample and then averaged to improve the resolution of the resulting coercivity distributions. Samples were demagnetized using stepwise thermal treatments in air to a maximum temperature of 600°C. Isothermal remanent magnetization was measured after each temperature step using 2G Magnetometer. The same magnetometer was also used for alternating field (AF) demagnetization experiments. Room temperature (RT) magnetic susceptibility measurements were conducted on a Kappabridge KLY-2. The temperature dependence of magnetic susceptibility was measured using a MFK1 Kappabridge and CS4 oven across a temperature range from 50°C to 600°C in argon using a 350 Am⁻¹ field.

Low Temperature Measurements

Low temperature measurements of typical samples of the three unheated cements are shown in Figure 1. All samples exhibit a Verwey transition at 120 K, indicating the presence of stoichiometric magnetite. In addition, the presence of goethite in OB-700 and OB-600 samples is indicated by a continuous increase of RT SIRM with decreasing temperature and a separation of ZFC and FC curves persisting to 300 K. Evidence of goethite in the Omega CC sample is negligible, suggesting that the liquid form of sodium disilicate in the binder contains less of the iron hydroxide than the powdered form.

Room Temperature Measurements

All samples showed extremely low values of mass normalized susceptibility on the order of 10-9 m³/kg⁻¹ (Table 1), which can be explained as the superposition of diamagnetic materials with trace amount of ferrimagnetic material.

All samples displayed hysteresis loops with negative (diamagnetic) high-field slopes and hysteresis parameters typical for pseudo-single domain (PSD) particles of magnetite. Representative hysteresis loops for each type of cement are shown in Figure 2a and 2b. Average ratios of Mrs/Ms and Hcr/Hc for OB-700 samples are 0.12 and 4, respectively, whereas samples of other two types of cements exhibited greater Mrs/Ms ratios – 0.2 and 0.23 and lower Hcr/Hc ratios – 0.2 and 2.5 for OB-600 and Omega CC, respectively (See Table 1). Hysteresis loops of all samples reached approximately the same mass normalized saturation Ms ~1.1x10⁻³ Am²/kg⁻¹. It is also worth noting that the magnetic properties of OB-700 are quite homogeneous among all 7 samples, as indicated by their hysteresis parameters, which are distributed with standard deviations not exceeding 15% of their mean.

FORC diagrams performed on 3 samples of Omega700 displayed median Hc values of ~20 mT which agrees well with the average bulk coercivity value of 15 mT and is again suggestive of PSD magnetite (Figure 2d). Although the sample strength was quite weak, the FORC distribution in Figure 2d also shows a population of non-interacting single domain grains with coercivities up to ~80 mT.

Along these lines, stepwise AF demagnetization of a 1T SIRM for 4 samples of OB-700 exhibited a median destructive field (MDF) of ~25 mT, typical for PSD magnetite (Figure 2c); broadly consistent with the hysteresis and FORC data. The maximum AF of 150 mT was unable to remove ~10% of the SIRM, suggesting that goethite and/or ultrafine single domain magnetite are responsible for this higher coercivity component.

High Temperature Measurements

High temperature (HT) experiments were conducted only on OB-700 samples. HT susceptibility dependence measured on sample Omega700_4 (Figure 3a) indicated a Curie temperature of 590°C, suggestive of partially oxidized magnetite (maghemite). RT susceptibility increased by ~60% after heating the sample up to 600°C in argon, evidence of the growth of new magnetic material.

Thermal demagnetization of 1T SIRM performed on 4 samples of OB-700 showed a distributed range of unblocking temperatures (T_ab) with the highest T_ab at 580°C, the Curie temperature for pure magnetite (Figure 3b). Interestingly, 80-90% of remanence was destroyed below 400°C, which we interpret as evidence of partially oxidized magnetite.

Changes in low-temperature and hysteresis properties of Omega700 samples after high temperature treatments in air or argon are presented in Figure 4. All samples heated in air displayed significantly smaller Ms...
values, decreasing more than 50%. (Figure 4b). This drop in SIRM can be caused by continued oxidation of maghemite to hematite in air. On the other hand, heating in argon produced a near four-fold increase in Ms to ~4 x 10^-3 Am^2 kg^-1 (Figure 4c). This rise in saturation magnetization indicates the production of new magnetic material during heating, likely magnetite or maghemite from a goethite precursor.

Concluding thoughts and ways forward

Even though Omega cements are commonly thought to be purely diamagnetic, all the samples examined here displayed the presence of magnetite (or its partially oxidized equivalent) and two of the three cements also contained magnetically detectable goethite. The typical Ms for the unheated cements rivals the mass normalized saturation magnetization of a variety of natural sediments (e.g., pelagic limestones, argillaceous rocks, some sandstones, etc.). Heating of OB-700 to high temperatures in air decreased the room temperature saturation magnetization by ~50%, while heating in argon increased room temperature Ms by ~400%. Thus, the use of Omega cements with magnetically weak materials may be problematic because of magnetic contamination and possible misinterpretation of thermomagnetic data.

It may be possible for rock and paleomagnetic labs to reduce the concentration of magnetic contamination in Omega cements, for example, by sending the powder through a very clean Franz magnetic separator multiple times. Chemical treatments to remove magnetite or goethite are unlikely to be successful, as the acids that are typically used to dissolve iron oxides and oxhydroxides would also alter the Na,Si,F_6 and Na,O(SiO_2)_2. We’ve contacted Omega Engineering Inc. regarding the iron concentrations in their cements and their technical staff are currently exploring whether it would be possible to produce a high purity, high temperature cement specifically for rock magnetic and paleomagnetic applications.

Regardless, Omega high temperature cements continue to be an important tool for high temperature rock magnetic measurements. For most geologic materials the background magnetization of the cement will be insignificant. Additionally, the volume of cement used in most rock magnetic applications, and hence its ability to contaminate a magnetic measurement is relatively small. However, if your materials are weakly magnetic, then the issue of iron contamination in cement may remain, well, incurable.

References

Table 1. Magnetic Susceptibility and Hysteresis Parameters

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\chi) (10^-4 m^3/kg)</th>
<th>(M_s) (10^-3 Am^2 kg^-1)</th>
<th>(M_{rs}) (10^-3 Am^2 kg^-1)</th>
<th>(M_m) /(M_s)</th>
<th>(H_c) (mT)</th>
<th>(H_{cr}) (mT)</th>
<th>(H_c / H_{cr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omega700_1</td>
<td>4</td>
<td>1.2</td>
<td>0.12</td>
<td>0.10</td>
<td>10</td>
<td>3</td>
<td>0.33</td>
</tr>
<tr>
<td>Omega700_2</td>
<td>3</td>
<td>1.1</td>
<td>0.14</td>
<td>0.13</td>
<td>18</td>
<td>3</td>
<td>0.67</td>
</tr>
<tr>
<td>Omega700_3</td>
<td>5</td>
<td>1.2</td>
<td>0.12</td>
<td>0.10</td>
<td>12</td>
<td>55</td>
<td>0.26</td>
</tr>
<tr>
<td>Omega700_4</td>
<td>1</td>
<td>1.0</td>
<td>0.16</td>
<td>0.16</td>
<td>21</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>Omega700_5</td>
<td>2</td>
<td>0.10</td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega700_6</td>
<td>0</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omega700_7</td>
<td>-2</td>
<td>1.0</td>
<td>0.12</td>
<td>0.12</td>
<td>15</td>
<td>55</td>
<td>0.33</td>
</tr>
<tr>
<td>Omega700_Ave</td>
<td>2</td>
<td>1.1</td>
<td>0.13</td>
<td>0.12</td>
<td>15</td>
<td>55</td>
<td>0.4</td>
</tr>
<tr>
<td>St Dev</td>
<td>2</td>
<td>0.1</td>
<td>0.02</td>
<td>0.02</td>
<td>5</td>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>Omega600</td>
<td>11</td>
<td>1.1</td>
<td>0.26</td>
<td>0.23</td>
<td>17</td>
<td>43</td>
<td>2.6</td>
</tr>
<tr>
<td>OmegaCC</td>
<td>6</td>
<td>1.1</td>
<td>0.23</td>
<td>0.20</td>
<td>18</td>
<td>38</td>
<td>2.1</td>
</tr>
</tbody>
</table>
The Institute for Rock Magnetism is dedicated to providing state-of-the-art facilities and technical expertise free of charge to any interested researcher who applies and is accepted as a Visiting Fellow. Short proposals are accepted semi-annually in spring and fall for work to be done in a 10-day period during the following half year. Shorter, less formal visits are arranged on an individual basis through the Facilities Manager.

The IRM staff consists of Subir Banerjee, Professor/Founding Director; Bruce Moskowitz, Professor/Director; Joshua Feinberg, Assistant Professor/Associate Director; Mike Jackson, Peat Solheid and Dario Bilardello, Staff Scientists. Funding for the IRM is provided by the National Science Foundation, the W. M. Keck Foundation, and the University of Minnesota.

The IRM Quarterly is published four times a year by the staff of the IRM. If you or someone you know would like to be on our mailing list, if you have something you would like to contribute (e.g., titles plus abstracts of papers in press), or if you have any suggestions to improve the newsletter, please notify the editor: Dario Bilardello

Institute for Rock Magnetism
University of Minnesota
291 Shepherd Laboratories
100 Union Street S. E.
Minneapolis, MN 55455-0128
phone: (612) 624-5274
fax: (612) 625-7502
e-mail: dario@umn.edu
www.irm.umn.edu

The U of M is committed to the policy that all people shall have equal access to its programs, facilities, and employment without regard to race, religion, color, sex, national origin, handicap, age, veteran status, or sexual orientation.